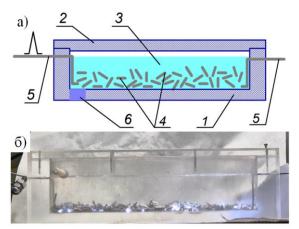
DOI: 10.34854/ICPAF.52.2025.1.1.210


SPARK DISCHARGE IN A LIQUID WITH ALUMINUM GRANULES IN THE INTERELECTRODE SPACE AS A SOURCE OF ALUMINUM HYDROXIDE NANOPARTICLES *)

Zakletskiy Z.A., Moryakov I.V., Kuznetsov S.V., Taktakishvili I.M., Gusein-zade N.G., Anpilov A.M.

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

Traditionally, chemical methods are used to synthesize metal nanoparticles, which have a number of significant drawbacks: chemical technological solutions are often expensive, hazardous to human health and environmentally dirty. One of the possible alternatives is to use a spark discharge to synthesize nanoparticles [1]. This method is environmentally friendly, easily scalable and at the same time quite productive.

In this work, a spark discharge in aqueous solutions (deionized water) with aluminum inclusions in the interelectrode space was studied. The discharge system was powered by an original high-

a) – diagram of the discharge chamber, b) – photo of the discharge chamber. 1 – discharge chamber, 2 – chamber cover, 3 – aqueous solution, 4 – metal inclusions, 5 – high-voltage electrodes, 6 – quartz window.

five-channel high-voltage voltage pulse generator. Parameters of one channel: energy of the storage capacitor E ~ 1.6 J, pulse repetition rate f \leq 100 Hz, U < 20 kV, I \leq 250 A. The conductivity of the liquid varied from 1 to 1000 µS/cm. When a high-voltage pulse was applied, the current channel was formed along a random path due to the breakdown of multiple gaps on short clearances and loose contacts of metal inclusions. The production of Al(OH)₃ nanoparticles occurred due to the spraying of the electrode material. The resulting fraction of nanoparticles is aluminum hydroxide in two crystalline phases Bayerite and Gibbsite. The yield of nanoparticles was ~ 0.2 g/min. The characteristic particle size was from 5 to 100 nm. It was found that the conductivity of water affected the morphology and phase composition of nanoparticles. In this

case, in the case of using water with a conductivity of 1 μ S/cm, a statistically stable mode of initiation and closure of the discharge was observed, in contrast to highly conductive water (1 mS/cm).

The obtained experimental results will be in demand in further studies when obtaining nanoparticles and their agglomerates with controlled parameters.

References

 Saito G., Akiyama T. Nanomaterial Synthesis Using Plasma Generation in Liquid. Journal of Nanomaterials. 2015. 1-21. DOI:10.1155/2015/123696

^{*)} abstracts of this report in Russian