ВЛИЯНИЕ ДРЕЙФОВ И ТОКОВ НА ОСНОВНЫЕ ПАРАМЕТРЫ РАБОТЫ ДИВЕРТОРА ТОКАМАКА Т-15МД $^{*)}$

 1,2 Маренков Е.Д., 3 Кавеева Е.Г., 3 Сениченков И.Ю., 4 Пшенов А.А., 2 Семенов П.С., 2 Горбунов А.В.

²НИЦ «Курчатовский институт», Москва, Россия

Представлены результаты первых расчетов пристеночной плазмы токамака Т-15МД в коде SOLPS-ITER с включенными дрейфами и токами. Рассмотрены режимы с мощностью, проходящей через сепаратрису $P_{SOL}=6$ МВт, и различными интенсивностями газонапуска водорода (H), соответствующими средней электронной плотности на сепаратрисе, $n_{esep}=2\cdot10^{19}-4.5\cdot10^{19}$ м⁻³.

Качественно, эффект от учета дрейфов такой же, как на токамаках аналогичного размера, например, ASDEX-Upgrade. Влияние дрейфов уменьшается с увеличением газонапуска и переходом в детачмент внешнего дивертора. При меньших значениях газонапуска, $\mathbf{E} \times \mathbf{B}$ дрейф приводит к перетеканию водорода (H) из внешнего дивертора во внутренний, что изменяет распределение нагрузки между пластинами дивертора: с учетом дрейфов максимальный поток тепла на внутренней пластине меньше, чем на внешней. Изменение электронной плотности на сепаратрисе, также вызванное $\mathbf{E} \times \mathbf{B}$ дрейфом, приводит к тому, что для достижения того же значения $\mathbf{n}_{\rm esep}$ требуется больший газонапуск H.

Распределение углеродной примеси также заметно изменяется при учете дрейфов и токов. Включение дрейфов приводит к перетеканию углерода (С) во внутренний дивертор, как и водорода. В результате, плотность С в холодной области SOL внутреннего дивертора, вытянутой в полоидальном направлении, увеличивается.

Как правило, при описании зависимости от газонапуска H, в качестве параметра, характеризующего разряд, используется либо $n_{\rm esep}$, либо полное количество водорода в SOL, $N_{\rm tot}$. Мы показываем, что, с точки зрения оценки влияния дрейфов, эти величины не эквивалентны. Если мы рассматриваем зависимости основных параметров, характеризующих дивертор, например, максимальной нагрузки на мишени, $q_{\rm pk}(n_{\rm esep})$, или тока насыщения на пластину дивертора, $I_{\rm sat}(n_{\rm esep})$, от $n_{\rm esep}$, то эти величины до перехода в детачмент практически не изменяются с включением дрейфов. В тоже время, одному и тому же значению $n_{\rm esep}$ с дрейфами и без них соответствуют два разных значения $N_{\rm tot}$. Поэтому, в смысле оценки влияния дрейфов, например, на $q_{\rm pk}$ или $I_{\rm sat}$, $N_{\rm tot}$ является более показательной величиной. С другой стороны, эта особенность позволяет использовать в первом приближении и расчеты без дрейфов, если соответствующие параметры брать как зависящие от $n_{\rm esep}$.

Также представляет интерес наблюдаемый эффект более ярко выраженного максимума на зависимости $I_{\text{sat}}(n_{\text{esep}})$, при включении дрейфов. Мы показываем, что это происходит, в основном, из-за перераспределения излучения углеродной примеси. Без дрейфов, даже после перехода в детачмент, большая часть распыленного углерода удерживается в холодной области за границей ионизационного фронта, в результате потери на излучение фактически выходят на насыщение, вместе с ними выходит на насыщение и I_{sat} . С дрейфами удержание углерода в диверторе ухудшается, в результате потери продолжают расти, что проявляется в более сильном спаде $I_{\text{sat}}(n_{\text{esep}})$ после перехода через максимум.

Работа проведена в рамках выполнения государственного задания НИЦ «Курчатовский институт».

¹НИЯУ МИФИ, Москва, Россия, <u>edmarenkov@mephi.ru</u>, <u>Marenkov_ED@nrcki.ru</u>

³Санкт-Петербургский Политехнический Университет Петра Великого, Санкт-Петербург,Россия

 $^{^4}$ ИТЭР, Сен-Поль-ле-Дюранс, Франция

^{*)} DOI – тезисы на английском