DOI: 10.34854/ICPAF.52.2025.1.1.071

INTERPRETATION OF SOFT X-RAY SPECTRA IN THE T-15MD TOKAMAK $^{*)}$

¹Levashova M.G., ¹Ryzhakov D.V., ¹Asadulin G.M., ¹Gorshkov A.V., ¹Demura A.V., ¹Drozd A.S., ^{1,2}Kukushkin A.B., ^{1,3}Leontyev D.S., ¹Lisitsa V.S., ^{1,2}Minashin P.V., ^{1,2}Panfilov D.S., ¹Sarychev D.V., ¹Sergeev D.S., ¹Tolpegina Yu.I., ^{1,2}Ulasevich D.L., ¹Shurygin V.A.

The results of interpretation of measurements of the spectrum of soft X-ray radiation in the tokamak T-15MD in the energy range of 2-10 keV, including discharges in the first campaign [1] with a steel first wall and a graphite diaphragm and the next campaign with a graphite lining of most of the first wall, are presented.

An algorithm for determination of the density of the main heavy impurity (iron) from the soft X-ray spectrum at known temperature profiles T_e and electron density n_e on the observation chord is presented. Since the projections (on the poloidal plane) of the soft X-ray and Thomson scattering diagnostics' observation chords in T-15MD are very close, the values of T_e and n_e were taken to be the same as on the Thomson scattering observation chord. Interferometry data were also used for determination of n_e . Calculations were performed for various impurity density profiles. The distribution of impurity ions by ionization degrees was determined by the quasi-stationary kinetics of ionization and recombination, considering cascade processes (the corresponding effective ionization and recombination rates from the database [2] were used). Bremsstrahlung and recombination radiation on impurity ions and bremsstrahlung radiation on hydrogen ions were considered.

In addition to comparing the calculated spectrum with the experimentally measured soft X-ray spectrum, the accuracy of the well-known method for estimating T_e in the plasma center using the exponential slope of the spectrum in the soft X-ray region was verified. It is also shown that using the effective charge approximation can give a significant error in calculating the absolute values of the soft X-rays intensity.

Calculations of the contribution of soft X-ray in the specified spectral range to the spectrum-integral bolometric measurements have been carried out. The contribution of radiation mechanisms in hot thermonuclear plasma with heavy impurities in a softer spectral range is estimated: polarization radiation of multielectron ions in their collisions with electrons [3], spectral lines of multielectron ions as a quasi-continuum [4] emitted due to dynamic polarizability of a quantum plasma ensemble described in a model close to the Thomas-Fermi ion.

References

- [1]. E.P. Velikhov, M.V. Kovalchuk, I.O. Anashkin, V.F. Andreev, G.M. Asadulin, et al. First experimental results on T-15MD tokamak. Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion, 2024, 47(2), 5—14, http://vant.iterru.ru/vant_2024_2/1.pdf.
- [2]. OPEN-ADAS, ADF11, https://open.adas.ac.uk/adf11.
- [3]. V. Astapenko. Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids. Springer Series on Atomic, Optical, and Plasma Physics (Tom 72), 2013.
- [4]. A.V. Demura, D.S. Leontyev, V.S. Lisitsa, V.A. Shurygin. Plasma Phys. Rep. 2020, 46, 241–251.

_

¹National Research Center «Kurchatov Institute», Moscow, Russia, <u>Kukushkin_AB@nrcki.ru</u>,

²National Research Nuclear University «MEPhI», Moscow, Russia

³MIPT (NRU), Moscow, Russia.

^{*)} abstracts of this report in Russian