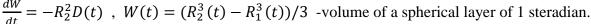
DOI: 10.34854/ICPAF.52.2025.1.1.138


MODELING THE DEVELOPMENT OF RAYLEIGH-TAYLOR INSTABILITY IN A SPHERICAL LAYER OF INCOMPRESSIBLE FLUID *)

Krivutsenko S.S., Lebo I.G.

MIREA – Russian Technological University, Moscow, Russia, <u>lebo@mirea.ru</u>, <u>skrivuts@gmail.ru</u>

In [1-4] the formulation is formulated and particular solutions are obtained in the problem of the development of Rayleigh-Taylor instability in a spherical layer of incompressible fluid. Below (see (1)) are the main equations describing the dynamics of a shell of incompressible fluid taking into account the evaporation of the outer layers under the action of: $P_{out}(t)$, $P_{in}(t)$ – external and internal pressures. D(t) – mass rate of evaporation of a substance, $R_1(t)$, $R_2(t)$ – inner and outer radii, ρ -density of the shell substance. Results of simulations illustrate Fig.1.

$$R_{2} = \sqrt[3]{R_{1}^{3} + 3W(t)}; \qquad Z = \frac{R_{1}(t)}{R_{2}(t)}; \qquad \frac{\partial V_{1}}{\partial t} = -\left\{2 - \frac{0(1Z^{4} -).5}{1 - Z}\right\} * \frac{V_{1}^{2}}{R_{1}} - \frac{P_{out} - P_{in}}{R_{1}(1 - Z)*\rho}$$
(1)

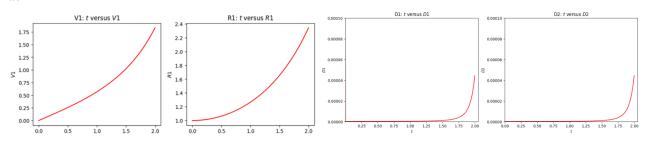


Figure 1. Graphs of growth of internal radius and speed.

Figure 2. Growth of disturbance amplitude on the inner boundary of the shell during its accelerated expansion. Harmonic number n=10.

Evolution of small perturbations of the internal $(\Delta_1(t) \cdot P_n(\theta, \varphi))$ and external $(\Delta_2(t) \cdot P_n(\theta, \varphi))$ shell boundaries (here $P_n(\theta, \varphi) - is$ a spherical harmonic) is described by equations (see [2-4]) The system of equations was solved numerically by the Runge-Kutta method.

The results are given for the case $P_{out}(t)=0$, $P_{in}(t)=1$, $As=R_{20}/(R_{20}-R_{10})=10$, $\rho_{in}=\rho_2=0$, $\rho_0=1$, $\delta P=0$, D=0, $\Delta_1^0=0.0001$, $\Delta_2^0=0.0$ (see fig.2)

The work was carried out within the framework of the National Center of Physics and Mathematics (NCPM) program "Gas Dynamics and Explosion Physics". Theme "Hydrodynamic Instability and Turbulence".

References

- [1]. Plesset M.S. // Journal of Applied Physics, 25, 96, (1954).
- [2]. Gamaliy E.G., Lebo I.G., Rozanov V.B., Sergoyan G.// Brief Communications on Physics. Moscow: FIAN, 5, 7-9, (1987) (in Russian)
- [3]. Lebo I.G., Rozanov V.B., Stepanov R.V. // Mathematical Modeling, 9, 83, (1997)
- [4]. Lebo I.G., Tishkin V.F. Study of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion. Moscow: FIZMATLIT, Chapter 2, 2006 (in Russian)

^{*)} abstracts of this report in Russian