DOI: 10.34854/ICPAF.52.2025.1.1.136 SIMULATION OF THIN FILM ACCELERATIN INTO CYLINDRICAL CHANNEL *)

Lebo I.G., Nikolaev M.

MIREA – Russian Technological University, Moscow, Russia, <u>lebo@mirea.ru</u>, <u>misha.nikoll@yandex.ru</u>

Using the NUTCY program [1], two-dimensional equations of gas dynamics are numerically solved in Eulerian cylindrical coordinates (r, z, t, t - time). In the calculations, the Mach number (Mx=10) was set, and the parameters behind the SW front were calculated using the Hugoniot ratios.

The results of calculations of two tasks are presented: the expansion of power shock wave (SW) into cylindrical channel, filled Air with initial pressure 1 Bar (1); the modelling of thin polymer film acceleration by strong shock wave with Mx=10 is made (2). The channel was filled Air with initial pressure 1 Bar. The radius of channel was $R_c=0.1$ cm, and radius of calculation region was $R_0=0.25$ cm. The shock wave moves from top to down with Mx = 10 (blue region at t = 0). The initial density of film is 1 g/cm³, and thickness is 50 µm.

The results of the first task have been compared with the data of [2], where SW moved in Ar gas. The results of the second task illustrate Fig.1.

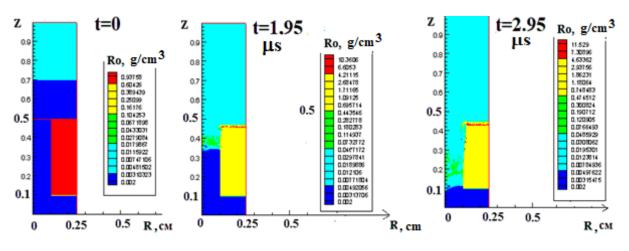


Fig. 1. Gas density distribution fields at time points a) $t = 0 \ \mu s$, b) $t = 1.95 \ \mu s$, c) $t = 2.95 \ \mu s$

SW moves from top to bottom (blue flower), thin film is destroyed and fragmented. The high density layer is flying with average speed 1.36 km/s.

The work was carried out within the framework of the program of the National Center for Physics and Mathematics (NCFM) "Gas Dynamics and explosion physics". Topic "Hydrodynamic instability and turbulence".

References

- [1]. Lebo I.G., Tishkin V.F. Investigation of hydrodynamic instability in laser fusion problems. Moscow: FIZMATLIT, 2006
- [2]. Lebo I.G., Obruchev I.V. // Russian Technological Journal, 10(1), 60-67, (2022)

^{*)} abstracts of this report in Russian