АЛГОРИТМ ОБРАБОТКИ АМПЛИТУДНЫХ РАСПРЕДЕЛЕНИЙ СИГНАЛОВ АТОМНЫХ АНАЛИЗАТОРОВ ДЛЯ ИТЭР *)

 2 <u>Наволоцкий А.С.</u>, 2 Андреев И.А., 2 Афанасьев В.И., 2 Мельник А.Д., 2 Миронов М.И., 2 Несеневич В.Г., 2 Петров М.П., 2 Петров С.Я., 2 Чернышев Ф.В., 2 Шмитов Р.Ю., 1 Мокеев А.Н.

Объектом исследования диагностической системы атомных анализаторов на ИТЭР являются испускаемые плазмой потоки нейтральных атомов дейтерия и трития. Измерение и анализ энергетических спектров этих атомов позволяет получить информацию об изотопном соотношении дейтерий-тритиевой топливной смеси внутри плазмы, что является задачей первостепенной важности для обеспечения оптимального режима термоядерного горения.

В составе системы сбора и обработки данных атомных анализаторов используются восемь модулей АЦП РХІе-5752В и восемь модулей ПЛИС РХІе-7971R компании National Instruments. Сигнал от каждого детекторного канала оцифровывается АЦП и попадает в ПЛИС, где производится регистрация импульсов и строится их амплитудное распределение. Среди сигналов, поступающих от детекторов, будут как полезные импульсы, так и фоновые, возникающие из-за воздействия на детекторы нейтронов и гамма-квантов. Если амплитуды полезных и фоновых импульсов сильно отличаются друг от друга, то они могут быть отделены методом амплитудной дискриминации. Однако, в некоторых детекторных каналах значительная часть фоновых импульсов может иметь амплитуду сигнала близкую к амплитуде полезных. В этом случае использование амплитудной дискриминации затруднено, что приводит к необходимости поиска иных методов выделения полезного сигнала.

В докладе рассматривается разработка алгоритма отделения полезного сигнала от фона в реальном времени. Описывается моделирование амплитудных распределений, необходимых для оценки точности работы алгоритма в различных сценариях. Приводятся зависимости точности выполнения алгоритма от загрузки каналов атомных анализаторов и оценивается время выполнения алгоритма на ПЛИС.

Работа выполнена при поддержке частного учреждения "ИТЭР-Центр" в рамках договора №17706413348240000190/21-24/01 от 17 июня 2024 г.

¹Частное учреждение Государственной корпорации по атомной энергии "Росатом" "Проектный центр ИТЭР", Москва, Россия, support@iterrf.ru

²Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия, post@mail.ioffe.ru

^{*)} DOI – тезисы на английском