РЕЗУЛЬТАТЫ ПЕРВЫХ ЭКСПЕРИМЕНТОВ НА Т-15MД *)

1Анашкин И.О., ¹Андреев В.Ф., ¹Асадулин Г.М., ¹Ахметов Э.Р., ¹Балашов А.Ю., ^{1,2}Бегишев Р.А., ¹Белов А.М., ¹Бельбас И.С., ⁴Бондарчук Э.Н., ¹Борщеговский А.А., ¹Горбунов А.В., ¹Горшков А.В., ¹Грашин С.А., ¹Громова А.В., ¹Диас Михайлова Д.Е., ¹Дрёмин М.М., ^{1,3}Дрозд А.С., ¹Дубиницкий А.Ф., ¹Земцов И.А., ¹Ильин И.Д., ¹Карпов А.В., ¹Качкин А.Г., ^{1,3}Кирнева Н.А., ¹Кислов Д.А., ¹Кочин В.А., ¹Крупин В.А., 1 Кузнецова Л.К., 1 Левин И.В., 1 , 6 Лисовой П.Д., 1 Лутченко А.В., 1 Машункин М.В., ⁴Минеев А.Б., ¹Модяев А.Л., ¹Мустафин Н.А., ¹Мялтон Т.Б., ¹Немец А.Р., ¹Николаев А.В., ¹Новиков В.Н., ¹Ноткин Г.Е., ¹Нургалиев М.Р., ¹Образцов И.С., ^{1,3}Панфилов Д.С., ¹Пименов И.С., ¹Рой И.Н., ⁵Романников А.Н., ¹Рыжаков Д.В., ^{1,6}Саврухин П.В., ¹Сарычев Д.В., ¹Сергеев Д.С., ¹Смирнов В.В., ¹Соловьёв Н.А., ¹Степин А.В., ¹Сушков А.В., ^{1,7}Сычугов Д.Ю., ¹Тарасян К.Н., ^{1,6}Тепикин В.И., 1 Толпегина Ю.И., 1 Хайрутдинов Э.Н., 1 Хвостенко А.П., 1 Хвостенко П.П., 1 Чудеснов А.И., 1 Шелухин Д.А., 1 Шестаков Е.А. и коллектив установки Т-15МД

 1 НИЦ «Курчатовский институт», Москва, Р Φ , nrcki@nrcki.ru

 2 МФТИ (НИУ), Долгопрудный, Р Φ

³НИЯУ МИФИ, Москва, РФ

АО «НИИЭФА», Санкт-Петербург, РФ

АО «ГНЦ РФ ТРИНИТИ», Москва, РФ

⁶НИУ МЭИ, Москва, РФ

 $^{\prime} M \Gamma$ У им. М.В. Ломоносова. Москва. Р Φ

Установка Т-15MД – токамак с низким аспектным отношением (A=2.2, R=1.48 м, a=0.67 м), тороидальным магнитным полем до $B_t = 2.0 \,\mathrm{Tr}$, D-образным сечением плазменного шнура с эллиптичностью до 1.8 и треугольностью до 0.4. На токамаке предусмотрены четыре системы дополнительного нагрева плазмы: гиротроны с частотой электронно-циклотронного резонанса, нейтральная инжекция, нагрев на частотах ионно-циклотронного и нижнего гибридного резонансов.

В 2023 году на Т-15МД проведены две экспериментальные кампании с лимитерной конфигурацией плазмы (графитовый лимитер, a = 0.67 м) и тороидальным магнитным полем $B_t = 1-1.2 \text{ Тл.}$ Для пробоя газа и оптимизации стадии подъема тока использовался гиротрон предыонизации с частотой излучения 82.6 ГГц и мощностью 1 МВт. В ходе экспериментов были получены плазменные разряды с током до 260 кА, температурой $T_e = 3-3.5$ кэВ и среднехордовой плотностью $n_e = 6 \times 10^{18}$ м⁻³. При токе плазмы 190 кА достигнута рекордная для отечественных токамаков длительность импульса 2 с (рисунок 1). В дальнейшем планируется ввод в работу систем дополнительного нагрева плазмы и поддержания тока, дооснащение токамака диагностиками, установка дивертора и облицовка камеры графитом.

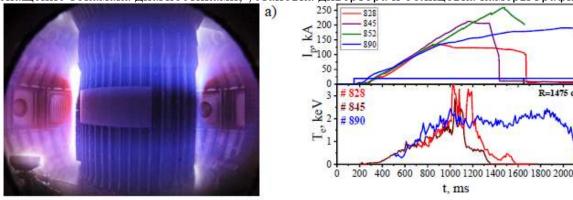


Рисунок 1. Плазменный разряд в Т-15МД; а) плазма в Т-15МД; б) осциллограммы токов плазмы в нескольких импульсах (номера указаны в поле рисунка); в) температура плазмы в центре вакуумной камеры, измеренная диагностикой томсоновского рассеяния

R=1475 см

B)

^{*)} DOI – тезисы на английском