ВЫЧИСЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИЧЕСКОЙ ПЛЕНКЕ НА ПОВЕРХНОСТИ ЭЛЕКТРОДА В ПЛАЗМЕ *)

Иванов В.А., Коныжев М.Е., Камолова Т.И., Дорофеюк А.А., Сатунин С.Н.

Институт общей физики им. А.М. Прохорова Российской академии наук, г. Москва, <u>ivanov@fpl.gpi.ru</u>

При воздействии плазмы на металлы существенную роль могут играть диэлектрические пленки и микровключения на их поверхности. Наличие диэлектрических пленок становится важным в условиях, когда металл служит катодом при возбуждении различных типов разрядов. Цель работы состоит в расчете электрических полей как внутри диэлектрической пленки, расположенной на высокопотенциальном отрицательном металлическом электроде, так и в ее разрыве при взаимодействии с потоком внешней плазмы. Диэлектрическая пленка, плотно прилегающая к поверхности металла, рассматривается как электрический конденсатор с утечкой заряда, обусловленной электропроводностью диэлектрика, при этом потенциал поверхности пленки до начала воздействия плазмы равен отрицательному потенциалу электрода. Процесс зарядки пленки и напряжение внутри неё описывается как $U(t)=j_0\cdot R$ $1-\exp(-\frac{t}{CR})$, где U(t) — изменение во времени t напряжения между внешней поверхностью диэлектрической пленки и металлом, С – удельная электрическая емкость единицы поверхности диэлектрической пленки относительно поверхности металла, R удельное омическое сопротивление единичной площади пленки, определяющее утечку электрического заряда, j_0 – ток ионов из плазмы на поверхность пленки в первые моменты времени после появления плазмы. По мере зарядки поверхности пленки потоком положительных ионов потенциал поверхности пленки будет возрастать от первоначального отрицательного значения Ψ_0 ≈300 В к более положительному значению, и ток электронов из плазмы будет также увеличиваться. Когда суммарный ток ионов и электронов из плазмы на поверхность пленки будет равен нулю, тогда потенциал внешней поверхности плёнки будет равен плавающему потенциалу плазмы Ψ_f , т.е. $U(t \to \infty) = \Psi(t \to \infty) - \Psi_0 = j_0 R = \Psi_f - \Psi_0$. В плазме с длительностью $\tau_{pl} >> \tau_f = CR$ величина максимального электрического поля в диэлектрической пленке вычисляется по формуле $E_d = (\Psi_f - \Psi_0)/d$. В Таблице даны округленные значения параметров пленок и поля $E=U(\tau_{\rm f})/d$ внутри пленок на титане. Взаимодействие плазмы плотностью $10^{13}-10^{12}~{\rm cm}^{-3}~{\rm c}$ тонкими оксидными пленками на титане может приводить к возникновению в пленке сильных электрических полей 30–3МВ/см, достаточных для электрического пробоя как внутри пленки, так и в её разрывах,

n _e , cm ⁻³	d, нм	<i>R</i> , Ом	С, мкФ	$\tau_{\rm f}$ =CR, мкс	j ₀ , А/см ²	$U(\tau_f)$, B	Е, МВ/см
10 ¹³	10	1	20	20	30	30	30
10 ¹³	100	10	2	20	30	300	30
10 ¹²	10	1	20	20	3	3	3
10 ¹²	100	10	2	20	3	30	3

Литература

[1]. В.А. Иванов Электрическое поле на поверхности погруженного в плазму металлического электрода при большом отрицательном потенциале // Успехи прикладной физики, 2022. Том 10, №4. С.343-350. DOI: 10.51368/2307-4469-2022-10-4-343-350

_

^{*)} DOI – тезисы на английском